1
0
mirror of https://github.com/lensapp/lens.git synced 2025-05-20 05:10:56 +00:00
lens/src/renderer/components/+workloads-pods/pod-charts.tsx

132 lines
4.1 KiB
TypeScript

/**
* Copyright (c) 2021 OpenLens Authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
import { mapValues } from "lodash";
import { observer } from "mobx-react";
import React, { useContext } from "react";
import { isMetricsEmpty, normalizeMetrics } from "../../../common/k8s-api/endpoints/metrics.api";
import { BarChart, cpuOptions, memoryOptions } from "../chart";
import { IResourceMetricsValue, ResourceMetricsContext } from "../resource-metrics";
import { NoMetrics } from "../resource-metrics/no-metrics";
import type { WorkloadKubeObject } from "../../../common/k8s-api/workload-kube-object";
import type { IPodMetrics } from "../../../common/k8s-api/endpoints";
export const podMetricTabs = [
"CPU",
"Memory",
"Network",
"Filesystem",
];
type IContext = IResourceMetricsValue<WorkloadKubeObject, { metrics: IPodMetrics }>;
export const PodCharts = observer(() => {
const { params: { metrics }, tabId, object } = useContext<IContext>(ResourceMetricsContext);
const id = object.getId();
if (!metrics) return null;
if (isMetricsEmpty(metrics)) return <NoMetrics/>;
const options = tabId == 0 ? cpuOptions : memoryOptions;
const {
cpuUsage,
memoryUsage,
fsUsage,
fsWrites,
fsReads,
networkReceive,
networkTransmit,
} = mapValues(metrics, metric => normalizeMetrics(metric).data.result[0].values);
const datasets = [
// CPU
[
{
id: `${id}-cpuUsage`,
label: `Usage`,
tooltip: `Container CPU cores usage`,
borderColor: "#3D90CE",
data: cpuUsage.map(([x, y]) => ({ x, y })),
},
],
// Memory
[
{
id: `${id}-memoryUsage`,
label: `Usage`,
tooltip: `Container memory usage`,
borderColor: "#c93dce",
data: memoryUsage.map(([x, y]) => ({ x, y })),
},
],
// Network
[
{
id: `${id}-networkReceive`,
label: `Receive`,
tooltip: `Bytes received by all containers`,
borderColor: "#64c5d6",
data: networkReceive.map(([x, y]) => ({ x, y })),
},
{
id: `${id}-networkTransmit`,
label: `Transmit`,
tooltip: `Bytes transmitted from all containers`,
borderColor: "#46cd9e",
data: networkTransmit.map(([x, y]) => ({ x, y })),
},
],
// Filesystem
[
{
id: `${id}-fsUsage`,
label: `Usage`,
tooltip: `Bytes consumed on this filesystem`,
borderColor: "#ffc63d",
data: fsUsage.map(([x, y]) => ({ x, y })),
},
{
id: `${id}-fsWrites`,
label: `Writes`,
tooltip: `Bytes written on this filesystem`,
borderColor: "#ff963d",
data: fsWrites.map(([x, y]) => ({ x, y })),
},
{
id: `${id}-fsReads`,
label: `Reads`,
tooltip: `Bytes read on this filesystem`,
borderColor: "#fff73d",
data: fsReads.map(([x, y]) => ({ x, y })),
},
],
];
return (
<BarChart
name={`${object.getName()}-metric-${tabId}`}
options={options}
data={{ datasets: datasets[tabId] }}
/>
);
});